Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int Immunopharmacol ; 128: 111476, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185035

RESUMO

Streptococcus pneumoniae is a clinically relevant pathogen notorious for causing pneumonia, meningitis, and otitis media in immunocompromised patients. Currently, antibiotic therapy is the most efficient treatment for fighting pneumococcal infections. However, an arise in antimicrobial resistance in S. pneumoniae has become a serious health issue globally. To resolve the problem, alternative and cost-effective strategies, such as monoclonal antibody-based targeted therapy, are needed for combating bacterial infection. S. pneumoniae alpha-enolase (spEno1), which is thought to be a great target, is a surface protein that binds and converts human plasminogen to plasmin, leading to accelerated bacterial infections. We first purified recombinant spEno1 protein for chicken immunization to generate specific IgY antibodies. We next constructed two single-chain variable fragments (scFv) antibody libraries by phage display technology, containing 7.2 × 107 and 4.8 × 107 transformants. After bio-panning, ten scFv antibodies were obtained, and their binding activities to spEno1 were evaluated on ELISA, Western blot and IFA. The epitopes of spEno1 were identified by these scFv antibodies, which binding affinities were determined by competitive ELISA. Moreover, inhibition assay displayed that the scFv antibodies effectively inhibit the binding between spEno1 and human plasminogen. Overall, the results suggested that these scFv antibodies have the potential to serve as an immunotherapeutic drug against S. pneumoniae infections.


Assuntos
Fosfopiruvato Hidratase , Anticorpos de Cadeia Única , Streptococcus pneumoniae , Animais , Humanos , Galinhas , Biblioteca de Peptídeos , Fosfopiruvato Hidratase/imunologia , Plasminogênio , Proteínas Recombinantes , Anticorpos de Cadeia Única/imunologia , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/imunologia
2.
Int Immunopharmacol ; 120: 110277, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196558

RESUMO

Overexpression of human alpha-enolase (hEno1)has been reported in a wide range of cancers and is tightly associated with poor prognosis, making it a remarkable biomarker and therapeutic target. In this study, polyclonal yolk-immunoglobulin (IgY) antibodies purified from hEno1-immunized chickens showed a noticeable specific humoral response. Phage display technology was used to construct two antibody libraries of IgY gene-derived single-chain variable fragments (scFvs) containing 7.8 × 107 and 5.4 × 107 transformants, respectively. Phage-based ELISA indicated that specific anti-hEno1 clones were significantly enriched. The nucleotide sequences of scFv-expressing clones were determined and classified into seven groups either in the short linker or the long linker. Moreover, higher mutation rates were revealed in the CDR regions, especially in the CDR3. Three distinguish antigenic epitopes were identified on the hEno1 protein. The binding activities of selected anti-hEno1 scFv on hEno1-positive PE089 lung cancer cells were confirmed using Western blot, flow cytometry, and immunofluorescence assay. In particular, hEnS7 and hEnS8 scFv antibodies significantly suppressed the growth and migration of PE089 cells. Taken together, these chicken-derived anti-hEno1 IgY and scFv antibodies have great potential to develop diagnostic and therapeutic agents for the treatment of lung cancer patients with high expression levels of hEno1 protein.


Assuntos
Neoplasias Pulmonares , Fosfopiruvato Hidratase , Anticorpos de Cadeia Única , Animais , Humanos , Técnicas de Visualização da Superfície Celular , Galinhas , Ensaio de Imunoadsorção Enzimática , Biblioteca de Peptídeos , Fosfopiruvato Hidratase/imunologia
3.
Front Immunol ; 14: 1292019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288120

RESUMO

Background: Nectin-4 is a novel biomarker overexpressed in various types of cancer, including breast cancer, in which it has been associated with poor prognosis. Current literature suggests that nectin-4 has a role in cancer progression and may have prognostic and therapeutic implications. The present study aims to produce nectin-4-specific single-chain variable fragment (scFv) antibodies and evaluate their applications in breast cancer cell lines and clinical specimens. Methods: We generated recombinant nectin-4 ectodomain fragments as immunogens to immunize chickens and the chickens' immunoglobulin genes were amplified for construction of anti-nectin-4 scFv libraries using phage display. The binding capacities of the selected clones were evaluated with the recombinant nectin-4 fragments, breast cancer cell lines, and paraffin-embedded tissue sections using various laboratory approaches. The binding affinity and in silico docking profile were also characterized. Results: We have selected two clones (S21 and L4) from the libraries with superior binding capacity. S21 yielded higher signals when used as the primry antibody for western blot analysis and flow cytometry, whereas clone L4 generated cleaner and stronger signals in immunofluorescence and immunohistochemistry staining. In addition, both scFvs could diminish attachment-free cell aggregation of nectin-4-positive breast cancer cells. As results from ELISA indicated that L4 bound more efficiently to fixed nectin-4 ectodomain, molecular docking analysis was further performed and demonstrated that L4 possesses multiple polar contacts with nectin-4 and diversity in interacting residues. Conclusion: Overall, the nectin-4-specific scFvs could recognize nectin-4 expressed by breast cancer cells and have the merit of being further explored for potential diagnostic and therapeutic applications.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Animais , Anticorpos de Cadeia Única/genética , Nectinas , Biomarcadores Tumorais , Simulação de Acoplamento Molecular , Galinhas
4.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361757

RESUMO

Enterovirus 71 (EV71) is the major etiological agent contributing to the development of hand-foot-mouth disease (HFMD). There are not any global available vaccines or antibody drugs against EV71 released yet. In this study, we perform the virus immunization in a cost-effective and convenient approach by preparing virus particles from size exclusion and immunization of chicken. Polyclonal yolk-immunoglobulin (IgY) was simply purified from egg yolk and monoclonal single-chain variable fragments (scFv) were selected via phage display technology with two scFv libraries containing 6.0 × 106 and 1.3 × 107 transformants. Specific clones were enriched after 5 rounds of bio-panning and four identical genes were classified after the sequence analysis. Moreover, the higher mutation rates were revealed in the CDR regions, especially in the CDR3. IgY showed specific binding activities to both EV71-infected and Coxsackievirus 16-infected cell lysates and high infectivity inhibitory activity of EV71. However, while IgY detected a 37 kDa protein, the selected scFv seemingly detected higher size proteins which could be cell protein instead of EV71 proteins. Despite the highly effective chicken antibody generation, the purity of virus particles prepared by size exclusion is the limitation of this study, and further characterization should be carried out rigorously.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Anticorpos de Cadeia Única , Animais , Vírion/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Gema de Ovo , Galinhas
5.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200056, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33281887

RESUMO

BACKGROUND: The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. METHODS: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. RESULTS: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. CONCLUSION: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.

6.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326294

RESUMO

Candida albicans (C. albicans) is an opportunistic human pathogen responsible for approximately a half of clinical candidemia. The emerging Candida spp. with resistance to azoles is a major challenge in clinic, suggesting an urgent demand for new drugs and therapeutic strategies. Alpha-enolase (Eno1) is a multifunctional protein and represents an important marker for invasive candidiasis. Thus, C. albicans Eno1 (CaEno1) is believed to be an important target for the development of therapeutic agents and antibody drugs. Recombinant CaEno1 (rCaEno1) was first used to immunize chickens. Subsequently, we used phage display technology to construct two single chain variable fragment (scFv) antibody libraries. A novel biopanning procedure was carried out to screen anti-rCaEno1 scFv antibodies, whose specificities were further characterized. The polyclonal IgY antibodies showed binding to rCaEno1 and native CaEno1. A dominant scFv (CaS1) and its properties were further characterized. CaS1 attenuated the growth of C. albicans and inhibited the binding of CaEno1 to plasminogen. Animal studies showed that CaS1 prolonged the survival rate of mice and zebrafish with candidiasis. The fungal burden in kidney and spleen, as well as level of inflammatory cytokines were significantly reduced in CaS1-treated mice. These results suggest CaS1 has potential of being immunotherapeutic drug against C. albicans infections.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Inibidores Enzimáticos/farmacologia , Fosfopiruvato Hidratase/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Camundongos , Ligação Proteica , Peixe-Zebra
7.
J. venom. anim. toxins incl. trop. dis ; 26: e20200056, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135145

RESUMO

The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. Methods: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. Results: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. Conclusion: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Galinhas , Trimeresurus , Anticorpos , Bacteriófagos
8.
Toxins (Basel) ; 10(10)2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248928

RESUMO

Traditional, horse-derived antivenin is currently the most efficient treatment against snake bites. However, it is costly and has unpredictable side effects. Thus, alternative, cost-effective strategies for producing antivenin are needed. In this study, we immunized hens with inactivated NNA venom proteins from the cobra Naja naja atra (NNA). Purified yolk IgY antibodies showed specific anti-NNA binding activity comparable to that of the equine-derived antivenin. We used phage display technology to generate two antibody libraries containing 9.0 × 108 and 8.4 × 108 clones with a short or long linker, respectively. The phage ELISA indicated that anti-NNA clones displaying single-chain variable fragments (scFv) were significantly enriched after biopanning. The nucleotide sequences of the light and heavy chain genes of 30 monoclonal scFv antibodies were determined and classified into six groups with the short linker and nine groups with the long linker. These scFv clones specifically bound to NNA proteins but not to venom proteins from other snakes. Their binding affinities were further determined by competitive ELISA. Animal model studies showed that anti-NNA IgY antibodies exhibited complete protective effects, while a combination of scFv antibodies raised the survival rates and times of mice challenged with lethal doses of NNA venom proteins.


Assuntos
Antivenenos/imunologia , Venenos Elapídicos/imunologia , Naja naja , Anticorpos de Cadeia Única/imunologia , Animais , Galinhas/imunologia , Feminino , Imunoglobulinas/imunologia , Camundongos Endogâmicos ICR , Proteínas de Répteis/imunologia , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/terapia
9.
Toxins (Basel) ; 9(11)2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29076991

RESUMO

Russell's vipers containing hemotoxic and neurotoxic venom commonly cause snake envenomation. Horse-derived antivenom is a specific antidote, but its production is expensive and has side effects. Developing a cost-effective and more tolerable therapeutic strategy is favorable. In this study, using glutaraldehyde-attenuated Daboia russelii formosensis (DRF) venom proteins to immunize chickens, polyclonal yolk-immunoglobulin (IgY) antibodies were generated and showed a specific binding affinity. Phage display technology was used to generate two antibody libraries of single-chain variable fragments (scFvs) containing 3.4 × 107 and 5.5 × 107 transformants, respectively. Phage-based ELISA indicated that specific clones were enriched after bio-panning. The nucleotide sequences of scFv-expressing clones were analyzed and classified into six groups in the short linker and four groups in the long linker. These scFv antibodies specifically bound to DRF proteins, but not other venom proteins. Mass spectrometric data suggested that these scFv antibodies may recognize phospholipase A2 RV-4 or RV-7. In vivo studies showed that anti-DRF IgY exhibited complete protective effects and mixed scFv antibodies increased the survival rate and time of mice challenged with a lethal dose of DRF proteins. These antibodies can be potentially applied in a rapid diagnostic method or for treatment in the future.


Assuntos
Anticorpos Neutralizantes/imunologia , Antivenenos/imunologia , Imunoglobulinas/imunologia , Proteínas de Répteis/imunologia , Anticorpos de Cadeia Única/imunologia , Venenos de Víboras/imunologia , Animais , Galinhas/imunologia
10.
J Autoimmun ; 34(4): 364-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19818583

RESUMO

An autoimmune response can be induced with the application of dendritic cells (DCs), offering a viable tumor vaccine for cancer immunotherapy. Previous studies have shown that DC-based tumor vaccines in animal tumor models can inhibit tumor growth and induce autoantibodies transiently without clinical or histological features of autoimmunity. The present study aimed to investigate the role of immune response induced by dendritic cells-based therapy, especially anti-ds DNA antibodies in tumor inhibition. In this study, high titers of anti-ds DNA antibodies were induced after injecting syngeneic dendritic cells into BALB/c mice. In addition, mice immunized with DCs showed the inhibition of RL male symbol 1, BALB/c leukemia cell line, tumor growth, and prolonged survival times of tumor mice but no significant difference was found in specific CTL response and NK cell activity when compared to those of the control group. Anti-ds DNA monoclonal antibodies can recognize RL male symbol 1 cells but not normal cells by FACS analysis. Monoclonal anti-ds DNA antibody was demonstrated to be able to lyse tumor cells via complement mediated reaction in vitro and also exhibits the anti-tumor effects when the antibody was injected into tumor-implanted mice. The data suggested that immunization with dendritic cells can induce autoimmune response, which might exert anti-tumor activity in vivo.


Assuntos
Autoimunidade/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Leucemia/terapia , Animais , Anticorpos Antinucleares/sangue , Linhagem Celular Tumoral , Células Dendríticas/transplante , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento
11.
Exp Biol Med (Maywood) ; 234(8): 952-60, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19491372

RESUMO

Residual cancer cells appearing in blood circulation reduce the effects of radiotherapy or chemotherapy in cancer patients. It has been well documented that cultured dendritic cells can be used as a powerful tool to induce immune response. In this study, we administered different manipulations of dendritic cells (DCs), including DCs pulsed with tumor cell lysate (TCL), transfected with adenoviral IL-12 vector (AdIL-12) and transfected with AdIL-12 after being pulsed with TCL, to determine whether improved DCs based immunotherapy can specifically suppress the metastasis of tumor cells. The results demonstrated that administration of engineered DCs that transfected with AdIL-12 after being pulsed with TCL to mice with leukemia had a better protective effect than that of DCs either pulsed with TCL or transfected with AdIL-12. Moreover, depletion of CD8(+) cells in the engineered DCs administered leukemia mice reduced the protective effect. These results suggest that DCs modified with TCL and AdIL-12 can prolong survival time by enhancing the activity of cytotoxic T cells. Although more studies on the mechanisms are needed, cytokine genes engineered DCs provide a promising therapeutic potential on the murine model of leukemia.


Assuntos
Células Dendríticas/imunologia , Interleucina-12/genética , Leucemia/terapia , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Dendríticas/virologia , Modelos Animais de Doenças , Engenharia Genética , Imunidade Celular/imunologia , Leucemia/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia , Transfecção , Vacinação
12.
Arthritis Rheum ; 50(10): 3250-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15476240

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is characterized by the existence of a heterogeneous group of autoantibodies directed against intact nuclear structures, such as nucleosomes. The most prominent of these autoantibodies are those directed against double-stranded DNA (dsDNA) and histones. The majority are of the IgG isotype and show affinity maturation, both of which are known hallmarks of T cell help. Much evidence suggests that the nucleosome is a major candidate autoantigen in SLE. In this study, a novel strategy was used to identify the critical CD4+ T cell autoepitopes in nucleosomes. In addition, peptide-based therapy was then performed in a lupus animal model. METHODS: Bone marrow (BM)-derived dendritic cells (DCs) were used to examine the self-T cell responses against nucleosomes and to characterize the T cell epitope(s) of nucleosomes in (NZB x NZW)F1 (BWF1) mice. RESULTS: Several potential auto-T cell epitopes of core histone proteins (H2A, H2B, H3, and H4) were identified. Nucleosome-pulsed BM-derived DCs elicited release of interleukin-4 and interferon-gamma, representing a Th0 (i.e., mixed Th1 and Th2) pattern of cytokine production. In addition, intradermal immunization of BWF1 mice with the H3(111-130) peptide not only suppressed the level of anti-dsDNA and anti-single-stranded DNA IgG, but also significantly delayed the progress of glomerulonephritis in lupus-prone BWF1 mice. CONCLUSION: These results will help in understanding how pathogenic autoimmune responses develop in spontaneous SLE. This may potentially open the way to T cell-based immunotherapy for lupus.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Nucleossomos/imunologia , Animais , Autoantígenos/imunologia , Medula Óssea/imunologia , DNA/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/análise , Histonas/análise , Imunoterapia/métodos , Lúpus Eritematoso Sistêmico/terapia , Camundongos , Camundongos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...